Towards guided and automated programming of subthalamic area stimulation in Parkinson’s disease

dc.contributor.authorSan San, Xu
dc.contributor.authorSinclair, Nicholas
dc.contributor.authorBullus, Kristian
dc.contributor.authorPerera, Thushara
dc.contributor.authorLee, Wee-lih
dc.contributor.authorMcDermott, Hugh
dc.contributor.authorThevathasan, Wesley
dc.date.accessioned2022-08-02T05:07:46Z
dc.date.available2022-08-02T05:07:46Z
dc.date.issued2022-01-13
dc.description.abstractSelecting the ideal contact to apply subthalamic nucleus deep brain stimulation in Parkinson’s disease can be an arduous process, with outcomes highly dependent on clinician expertise. This study aims to assess whether neuronal signals recorded intraoperatively in awake patients, and the anatomical location of contacts, can assist programming. In a cohort of 14 patients with Parkinson’s disease, implanted with subthalamic nucleus deep brain stimulation, the four contacts on each lead in the 28 hemispheres were ranked according to proximity to a nominated ideal anatomical location and power of the following neuronal signals: evoked resonant neural activity, beta oscillations and high-frequency oscillations. We assessed how these rankings predicted, on each lead: (i) the motor benefit from deep brain stimulation applied through each contact and (ii) the ‘ideal’ contact to apply deep brain stimulation. The ranking of contacts according to each factor predicted motor benefit from subthalamic nucleus deep brain stimulation, as follows: evoked resonant neural activity; r2 = 0.50, Akaike information criterion 1039.9, beta; r2 = 0.50, Akaike information criterion 1041.6, high-frequency oscillations; r2 = 0.44, Akaike information criterion 1057.2 and anatomy; r2 = 0.49, Akaike information criterion 1048.0. Combining evoked resonant neural activity, beta and high-frequency oscillations ranking data yielded the strongest predictive model (r2 = 0.61, Akaike information criterion 1021.5). The ‘ideal’ contact (yielding maximal benefit) was ranked first according to each factor in the following proportion of hemispheres; evoked resonant neural activity 18/28, beta 17/28, anatomy 16/28, high-frequency oscillations 7/28. Across hemispheres, the maximal available deep brain stimulation benefit did not differ from that yielded by contacts chosen by clinicians for chronic therapy or contacts ranked first according to evoked resonant neural activity. Evoked resonant neural activity, beta oscillations and anatomy similarly predicted how motor benefit from subthalamic nucleus deep brain stimulation varied across contacts on each lead. This could assist programming by providing a probability ranking of contacts akin to a ‘monopolar survey’. However, these factors identified the ‘ideal’ contact in only a proportion of hemispheres. More advanced signal processing and anatomical techniques may be needed for the full automation of contact selection.en_US
dc.description.sponsorshipThe work was funded by the National Health and Medical Research Council [development grant #1177815, project grant #1103238, post-graduate scholarship #1133295 (S.S. X.)], Colonial Foundation, St Vincent’s Hospital Research Endowment Fund and Lions International. The Bionics Institute acknowledges the support it receives from the Victorian Government through its Operational Infrastructure Support Program.en_US
dc.identifier.citationSan San Xu, Nicholas C. Sinclair, Kristian J. Bulluss, Thushara Perera, Wee-Lih Lee, Hugh J. McDermott, Wesley Thevathasan, Towards guided and automated programming of subthalamic area stimulation in Parkinson’s disease, Brain Communications, Volume 4, Issue 1, 2022, fcac003en_US
dc.identifier.issn2632-1297
dc.identifier.urihttp://repository.bionicsinstitute.org:8080/handle/123456789/421
dc.language.isoenen_US
dc.publisherBrain Communicationsen_US
dc.subjectParkinson's diseaseen_US
dc.subjectdeep brain stimulationen_US
dc.subjectsubthalamic nucleusen_US
dc.subjectevoked potentialsen_US
dc.subjectlocal field potentialsen_US
dc.titleTowards guided and automated programming of subthalamic area stimulation in Parkinson’s diseaseen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2022_SXu_Towardsguidedandautomatedprogramming.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections