Cortical fNIRS Responses Can Be Better Explained by Loudness Percept than Sound Intensity
dc.contributor.author | Weder, Stefan | |
dc.contributor.author | Shoushtarian, Mehrnaz | |
dc.contributor.author | Olivares, Virginia | |
dc.contributor.author | Zhou, Xin | |
dc.contributor.author | Innes-Brown, Hamish | |
dc.contributor.author | McKay, Colette | |
dc.date.accessioned | 2020-02-03T04:21:37Z | |
dc.date.available | 2020-02-03T04:21:37Z | |
dc.date.issued | 2020-01 | |
dc.description.abstract | OBJECTIVES: Functional near-infrared spectroscopy (fNIRS) is a brain imaging technique particularly suitable for hearing studies. However, the nature of fNIRS responses to auditory stimuli presented at different stimulus intensities is not well understood. In this study, we investigated whether fNIRS response amplitude was better predicted by stimulus properties (intensity) or individually perceived attributes (loudness). DESIGN: Twenty-two young adults were included in this experimental study. Four different stimulus intensities of a broadband noise were used as stimuli. First, loudness estimates for each stimulus intensity were measured for each participant. Then, the 4 stimulation intensities were presented in counterbalanced order while recording hemoglobin saturation changes from cortical auditory brain areas. The fNIRS response was analyzed in a general linear model design, using 3 different regressors: a non-modulated, an intensity-modulated, and a loudness-modulated regressor. RESULTS: Higher intensity stimuli resulted in higher amplitude fNIRS responses. The relationship between stimulus intensity and fNIRS response amplitude was better explained using a regressor based on individually estimated loudness estimates compared with a regressor modulated by stimulus intensity alone. CONCLUSIONS: Brain activation in response to different stimulus intensities is more reliant upon individual loudness sensation than physical stimulus properties. Therefore, in measurements using different auditory stimulus intensities or subjective hearing parameters, loudness estimates should be examined when interpreting results. | en_US |
dc.description.sponsorship | The Bionics Institute acknowledges the support it receives from the Victorian Government through its Operational Infrastructure Support Program. S.W. was funded by the Swiss National Science Foundation (SNSF), award number 2BSP3_161929. X.Z. was supported by a Melbourne University International PhD Scholarship. V.O. was supported by the Chilean National Commission for Scientific and Technological Research (CONICYT) scholarship and The University of Valparaiso, Chile. H.I.-B. was supported by a National Health and Medical Research Council early career fellowship. C.M. was supported by a Veski Fellowship. | en_US |
dc.identifier.citation | Weder, S., M. Shoushtarian, V. Olivares, X. Zhou, H. Innes-Brown, and C. McKay. 2020. Cortical fNIRS Responses Can Be Better Explained by Loudness Percept than Sound Intensity. Ear and Hearing. 41(5): 1187-1195. | en_US |
dc.identifier.issn | 0196-0202 | |
dc.identifier.uri | http://repository.bionicsinstitute.org:8080/handle/123456789/382 | |
dc.language.iso | en | en_US |
dc.publisher | Wolters Kluwer Health, Inc | en_US |
dc.subject | Cortical brain activation | en_US |
dc.subject | Functional near-infrared specrtroscopy | en_US |
dc.subject | Loudness perception | en_US |
dc.subject | Sound intensity | en_US |
dc.title | Cortical fNIRS Responses Can Be Better Explained by Loudness Percept than Sound Intensity | en_US |
dc.type | Article | en_US |