Validation of a Precision Tremor Measurement System for Multiple Sclerosis
dc.contributor.author | Perera, Thushara | |
dc.contributor.author | Lee, Wee-Lih | |
dc.contributor.author | Yohanandan, Shivanthan | |
dc.contributor.author | Nguyen, Ai-Lan | |
dc.contributor.author | Cruse, Belinda | |
dc.contributor.author | Boonstra, Frederique | |
dc.contributor.author | Noffs, Gustavo | |
dc.contributor.author | Vogel, Adam | |
dc.contributor.author | Kolbe, Scott | |
dc.contributor.author | Butzkueven, Helmut | |
dc.contributor.author | Evans, Andrew | |
dc.contributor.author | van der Walk, Anneke | |
dc.date.accessioned | 2018-09-25T01:30:48Z | |
dc.date.available | 2018-09-25T01:30:48Z | |
dc.date.issued | 2018-09 | |
dc.description.abstract | Background: Tremor is a debilitating symptom of Multiple Sclerosis (MS). Little is known about its pathophysiology and treatments are limited. Clinical trials investigating new interventions often rely on subjective clinical rating scales to provide supporting evidence of efficacy. New Method: We present a novel instrument (TREMBAL) which uses electromagnetic motion capture technology to quantify MS tremor. We aim to validate TREMBAL by comparison to clinical ratings using regression modelling with 310 samples of tremor captured from 13 MS participants who performed five different hand exercises during several follow-up visits. Minimum detectable change (MDC) and test-retest reliability were calculated and comparisons were made between MS tremor and data from 12 healthy volunteers. Results: Velocity of the index finger was most congruent with clinical observation. Regression modelling combining different features, sensor configurations, and labelling exercises did not improve results. TREMBAL MDC was 84% of its initial measurement compared to 91% for the clinical rating. Intra-class correlations for test-retest reliability were 0.781 for TREMBAL and 0.703 for clinical ratings. Tremor was lower (p = 0.002) in healthy subjects. Comparison with Existing Methods: Subjective scales have low sensitivity, suffer from ceiling effects, and mitigation against inter-rater variability is challenging. Inertial sensors are ubiquitous, however, their output is nonlinearly related to tremor frequency, compensation is required for gravitational artefacts, and their raw data cannot be intuitively comprehended. Conclusions: TREMBAL, compared with clinical ratings, gave measures in agreement with clinical observation, had marginally lower MDC, and similar test-retest reliability. | en_US |
dc.description.sponsorship | This work was supported by grants from the National Health and Medical Research Council (NHMRC) Australia Project Grant (1085461 CIA Van der Walt), NHMRC Fellowship (1135683 Vogel), The Colonial Foundation and the St. Vincent’s Research Endowment Fund. A/Prof Van der Walt is supported by an NHMRC Early Career Fellowship (1123330). Prof Butzkueven is supported by an NHMRC Practitioner Fellowship (1080518). A/Prof Vogel receives funding from an NHMRC Career Development Fellowship (1082910), and the Alexander von Humboldt Foundation, in addition to receiving institutional support from The University of Melbourne. Bionics Institute receives Operational Infrastructure Support from the Victorian Government. | en_US |
dc.identifier.citation | Perera, T., W. L. Lee, S. A. C. Yohanandan, A. L. Nguyen, B. Cruse, F. M. C. Boonstra, G. Noffs, A. P. Vogel, S. C. Kolbe, H. Butzkueven, A. Evans, and A. van der Walt. 2018. Validation of a Precision Tremor Measurement System for Multiple Sclerosis. Journal of Neuroscience Methods: [epub ahead of print]. | en_US |
dc.identifier.issn | 0165-0270 | |
dc.identifier.uri | http://repository.bionicsinstitute.org:8080/handle/123456789/320 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.subject | Tremor | en_US |
dc.subject | Multiple Sclerosis | en_US |
dc.subject | Objective monitoring | en_US |
dc.subject | Quantification | en_US |
dc.title | Validation of a Precision Tremor Measurement System for Multiple Sclerosis | en_US |
dc.type | Article | en_US |