Browsing by Author "Ganesan, Kumaravelu"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- ItemAn all-diamond, hermetic electrical feedthrough array for a retinal prosthesis(Elsevier, 2014-01) Ganesan, Kumaravelu; Garrett, David; Ahnood, Arman; Shivdasani, Mohit; Tong, Wei; Turnley, Ann; Fox, Kate; Meffin, Hamish; Prawer, StevenThe interface between medical implants and the human nervous system is rapidly becoming more and more complex. This rise in complexity is driving the need for increasing numbers of densely packed electrical feedthroughs to carry signals to and from implanted devices. This is particularly crucial in the field of neural prosthesis where high resolution stimulating or recording arrays near peripheral nerves or in the brain could dramatically improve the performance of these devices. Here we describe a flexible strategy for implementing high density, high count arrays of hermetic electrical feedthroughs by forming conducting nitrogen doped nanocrystalline diamond channels within an insulating polycrystalline diamond substrate. A unique feature of these arrays is that the feedthroughs can themselves be used as stimulating electrodes for neural tissue. Our particular application is such a feedthrough, designed as a component of a retinal implant to restore vision to the blind. The hermeticity of the feedthroughs means that the array can also form part of an implantable capsule which can interface directly with internal electronic chips. The hermeticity of the array is demonstrated by helium leak tests and electrical and electrochemical characterisation of the feedthroughs is described. The nitrogen doped nanocrystalline diamond forming the electrical feedthroughs is shown to be non cyctotoxic. New fabrication strategies, such as the one described here, combined with the exceptional biostability of diamond can be exploited to generate a range of biomedical implants that last for the lifetime of the user without fear of degradation.
- ItemDevelopment of a Magnetic Attachment Method for Bionic Eye Applications(Wiley Periodicals, Inc., 2016) Fox, Kate; Meffin, Hamish; Burns, Owen; Abbott, Carla; Allen, Penelope; Opie, Nicholas; McGowan, Ceara; Yeoh, Jonathon; Ahnood, Arman; Luu, Chi; Cicione, Rosemary; Saudners, Alexia; McPhedran, Michelle; Cardamone, Lisa; Villalobos, Joel; Garrett, David; Nayagam, David; Apollo, Nicholas; Ganesan, Kumaravelu; Shivdasani, Mohit; Stacey, Alastair; Escudie, Mathilde; Lichter, Samantha; Shepherd, Robert; Prawer, StephenSuccessful visual prostheses require stable, long-term attachment. Epiretinal prostheses, in particular, require attachment methods to fix the prosthesis onto the retina. The most common method is fixation with a retinal tack; however, tacks cause retinal trauma, and surgical proficiency is important to ensure optimal placement of the prosthesis near the macula. Accordingly, alternate attachment methods are required. In this study, we detail a novel method of magnetic attachment for an epiretinal prosthesis using two prostheses components positioned on opposing sides of the retina. The magnetic attachment technique was piloted in a feline animal model (chronic, nonrecovery implantation). We also detail a new method to reliably control the magnet coupling force using heat. It was found that the force exerted upon the tissue that separates the two components could be minimized as the measured force is proportionately smaller at the working distance. We thus detail, for the first time, a surgical method using customized magnets to position and affix an epiretinal prosthesis on the retina. The position of the epiretinal prosthesis is reliable, and its location on the retina is accurately controlled by the placement of a secondary magnet in the suprachoroidal location. The electrode position above the retina is less than 50 microns at the center of the device, although there were pressure points seen at the two edges due to curvature misalignment. The degree of retinal compression found in this study was unacceptably high; nevertheless, the normal structure of the retina remained intact under the electrodes.
- ItemDirect fabritcation of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapour deposition(Scientific Reports, 2016-01-25) Zhan, Hualin; Garrett, David; Apollo, Nicholas; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, JiriHigh surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of threedimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail.
- ItemElectrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis(Elsevier, 2012-08) Hadjinicolaou, Alex; Leung, Ronald; Garrett, David; Ganesan, Kumaravelu; Fox, Kate; Nayagam, David; Shivdasani, Mohit; Meffin, Hamish; Ibbotson, Michael; Prawer, Steven; O'Brien, Brendan
- ItemElectrically conducting diamond films grown on platinum foil for neural stimulation(IOP Publishing, 2019-07) Sikder, Kabir; Shivdasani, Mohit; Fallon, James; Seligman, Peter; Ganesan, Kumaravelu; Villalobos, Joel; Prawer, Steven; Garrett, DavidObjective With the strong drive towards miniaturization of active implantable medical devices and the need to improve the resolution of neural stimulation arrays, there is keen interest in the manufacture of small electrodes capable of safe, continuous stimulation. Traditional materials such as platinum do not possess the necessary electrochemical properties to stimulate neurons safely when electrodes are very small (i.e. typically less than about 300 um (78400 microm2)). While there are several commercially viable alternative electrode materials such as titanium nitride and iridium oxide, an attractive approach is modification of existing Pt arrays via a high electrochemical capacitance material coating. Such a composite electrode could still take advantage of the wide range of fabrication techniques used to make platinum-based devices. The coating, however, must be biocompatible, exhibit good adhesion and ideally be long lasting when implanted in the body. Approach Platinum foils were roughened to various degrees with regular arrays of laser milled pits. Conducting diamond films were grown on the foils by microwave plasma chemical vapor deposition. The adhesion strength of the films to the platinum was assessed by prolonged sonication and accelerated aging. Electrochemical properties were evaluated and compared to previous work. Main results In line with previous results, diamond coatings increased the charge injection capacity of the platinum foil by more than 300% after functionalization within an oxygen plasma. Roughening of the underlying platinum substrate by laser milling was required to generate strong adhesion between the diamond and the Pt foil. Electrical stress testing, near the limits of safe operation, showed that the diamond films were more electrochemically stable than platinum controls. Significance The article describes a new method to protect platinum electrodes from degradation in vivo. A 300% increase in charge injection means that device designers can safely employ diamond coated platinum stimulation electrodes at much smaller sizes and greater density than is possible for platinum. .
- ItemHermetic diamond capsules for biomedical implants enabled by gold active braze alloys(Elsevier, Ltd., 2015-03) Lichter, Samantha; Escudie, Mathilde; Stacey, Alastair; Ganesan, Kumaravelu; Fox, Kate; Ahnood, Arman; Apollo, Nicholas; Kua, Dunstan; Lee, Aaron; McGowan, Ceara; Saunders, Alexia; Burns, Owen; Nayagam, David; Williams, Richard; Garrett, David; Meffin, Hamish; Prawer, StephenAs the field of biomedical implants matures the functionality of implants is rapidly increasing. In the field of neural prostheses this is particularly apparent as researchers strive to build devices that interact with highly complex neural systems such as vision, hearing, touch and movement. A retinal implant, for example, is a highly complex device and the surgery, training and rehabilitation requirements involved in deploying such devices are extensive. Ideally, such devices will be implanted only once and will continue to function effectively for the lifetime of the patient. The first and most pivotal factor that determines device longevity is the encapsulation that separates the sensitive electronics of the device from the biological environment. This paper describes the realisation of a free standing device encapsulation made from diamond, the most impervious, long lasting and biochemically inert material known. A process of laser micro-machining and brazing is described detailing the fabrication of hermetic electrical feedthroughs and laser weldable seams using a 96.4% gold active braze alloy, another material renowned for biochemical longevity. Accelerated ageing of the braze alloy, feedthroughs and hermetic capsules yielded no evidence of corrosion and no loss of hermeticity. Samples of the gold braze implanted for 15 weeks, in vivo, caused minimal histopathological reaction and results were comparable to those obtained from medical grade silicone controls. The work described represents a first account of a free standing, fully functional hermetic diamond encapsulation for biomedical implants, enabled by gold active alloy brazing and laser micro-machining.
- ItemIn vivo biocompatibility of boron doped and nitrogen included conductive-diamond for use in medical implants(John Wiley & Sons Inc, 2015-01) Garrett, David; Saunders, Alexia; McGowan, Ceara; Specks, Joscha; Ganesan, Kumaravelu; Meffin, Hamish; Williams, Richard; Nayagam, DavidRecently, there has been interest in investigating diamond as a material for use in biomedical implants. Diamond can be rendered electrically conducting by doping with boron or nitrogen. This has led to inclusion of boron doped and nitrogen included diamond elements as electrodes and/or feedthroughs for medical implants. As these conductive device elements are not encapsulated, there is a need to establish their clinical safety for use in implants. This article compares the biocompatibility of electrically conducting boron doped diamond (BDD) and nitrogen included diamond films and electrically insulating poly crystalline diamond films against a silicone negative control and a BDD sample treated with stannous octoate as a positive control. Samples were surgically implanted into the back muscle of a guinea pig for a period of 4-15 weeks, excised and the implant site sectioned and submitted for histological analysis. All forms of diamond exhibited a similar or lower thickness of fibrotic tissue encapsulating compared to the silicone negative control samples. All forms of diamond exhibited similar or lower levels of acute, chronic inflammatory, and foreign body responses compared to the silicone negative control indicating that the materials are well tolerated in vivo. (c) 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2015.
- ItemIn vivo biocompatibility of boron doped and nitrogen included conductive-diamond for use in medical implants(Wiley Online Library, 2015-01-21) Garrett, David; Saunders, Alexia; McGowan, Ceara; Specks, Joshua; Ganesan, Kumaravelu; Meffin, Hamish; Williams, Richard; Nayagam, DavidRecently, there has been interest in investigating diamond as a material for use in biomedical implants. Diamond can be rendered electrically conducting by doping with boron or nitrogen. This has led to inclusion of boron doped and nitrogen included diamond elements as electrodes and/or feedthroughs for medical implants. As these conductive device elements are not encapsulated, there is a need to establish their clinical safety for use in implants. This article compares the biocompatibility of electrically conducting boron doped diamond (BDD) and nitrogen included diamond films and electrically insulating poly crystalline diamond films against a silicone negative control and a BDD sample treated with stannous octoate as a positive control. Samples were surgically implanted into the back muscle of a guinea pig for a period of 4-15 weeks, excised and the implant site sectioned and submitted for histological analysis. All forms of diamond exhibited a similar or lower thickness of fibrotic tissue encapsulating compared to the silicone negative control samples. All forms of diamond exhibited similar or lower levels of acute, chronic inflammatory, and foreign body responses compared to the silicone negative control indicating that the materials are well tolerated in vivo.
- ItemIn Vivo Feasibility of Epiretinal Stimulation Using Ultrananocrystalline Diamond 1 Electrodes(IOP Publishing, 2020-07) Shivdasani, Mohit; Evans, Mihailo; Burns, Owen; Yeoh, Jonathon; Allen, Penelope; Nayagam, David; Villalobos, Joel; Abbott, Carla; Luu, Chi; Opie, Nicholas; Sabu, Anu; Saunders, Alexia; McPhedran, Michelle; Cardamone, Lisa; McGowan, Ceara; Maxim, Vanessa; Williams, Richard; Fox, Kate; Cicione, Rosemary; Garrett, David; Ahnood, Arman; Ganesan, Kumaravelu; Meffin, Hamish; Burkitt, Anthony; Prawer, Steven; Williams, Chris; Shepherd, RobertPURPOSE: Due to their increased proximity to retinal ganglion cells (RGCs), epiretinal visual prostheses present the opportunity for eliciting phosphenes with low thresholds through direct RGC activation. This study characterised the in vivo performance of a novel prototype monolithic epiretinal prosthesis, containing Nitrogen incorporated ultrananocrystalline (N-UNCD) diamond electrodes. METHODS: A prototype implant containing up to twenty-five 120×120 µm N-UNCD electrodes was implanted into 16 anaesthetised cats and attached to the retina either using a single tack or via magnetic coupling with a suprachoroidally placed magnet. Multiunit responses to retinal stimulation using charge-balanced biphasic current pulses were recorded acutely in the visual cortex using a multichannel planar array. Several stimulus parameters were varied including; the stimulating electrode, stimulus polarity, phase duration, return configuration and the number of electrodes stimulated simultaneously. RESULTS: The rigid nature of the device and its form factor necessitated complex surgical procedures. Surgeries were considered successful in 10/16 animals and cortical responses to single electrode stimulation obtained in 8 animals. Clinical imaging and histological outcomes showed severe retinal trauma caused by the device in-situ in many instances. Cortical measures were found to significantly depend on the surgical outcomes of individual experiments, phase duration, return configuration and the number of electrodes stimulated simultaneously, but not stimulus polarity. Cortical thresholds were also found to increase over time within an experiment. CONCLUSIONS: The study successfully demonstrated that an epiretinal prosthesis containing diamond electrodes could produce cortical activity with high precision, albeit only in a small number of cases. Both surgical approaches were highly challenging in terms of reliable and consistent attachment to and stabilisation against the retina, and often resulted in severe retinal trauma. There are key challenges (device form factor and attachment technique) to be resolved for such a device to progress towards clinical application, as current surgical techniques are unable to address these issues.
- ItemWireless induction coils embedded in diamond for power transfer in medical implants(Springer, 2017-08) Sikder, Kabir; Fallon, James; Shivdasani, Mohit; Ganesan, Kumaravelu; Seligman, Peter; Garrett, DavidWireless power and data transfer to medical implants is a research area where improvements in current state-of-the-art technologies are needed owing to the continuing efforts for miniaturization. At present, lithographical patterning of evaporated metals is widely used for miniature coil fabrication. This method produces coils that are limited to low micron or nanometer thicknesses leading to high impedance values and thus limiting their potential quality. In the present work we describe a novel technique, whereby trenches were milled into a diamond substrate and filled with silver active braze alloy, enabling the manufacture of small, high cross-section, low impedance microcoils capable of transferring up to 10 mW of power up to a distance of 6 mm. As a substitute for a metallic braze line used for hermetic sealing, a continuous metal loop when placed parallel and close to the coil surface reduced power transfer efficiency by 43%, but not significantly, when placed perpendicular to the microcoil surface. Encapsulation of the coil by growth of a further layer of diamond reduced the quality factor by an average of 38%, which can be largely avoided by prior oxygen plasma treatment. Furthermore, an accelerated ageing test after encapsulation showed that these coils are long lasting. Our results thus collectively highlight the feasibility of fabricating a high-cross section, biocompatible and long lasting miniaturized microcoil that could be used in either a neural recording or neuromuscular stimulation device.