Browsing by Author "Zhou, Xin"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemAudio-visual integration in cochlear implant listeners and the effect of age difference(Acoustical Society of America, 2019-12) Zhou, Xin; Innes-Brown, Hamish; McKay, ColetteThis study aimed to investigate differences in audio-visual (AV) integration between cochlear implant (CI) listeners and normal-hearing (NH) adults. A secondary aim was to investigate the effect of age differences by examining AV integration in groups of older and younger NH adults. Seventeen CI listeners, 13 similarly aged NH adults, and 16 younger NH adults were recruited. Two speech identification experiments were conducted to evaluate AV integration of speech cues. In the first experiment, reaction times in audio-alone (A-alone), visual-alone (V-alone), and AV conditions were measured during a speeded task in which participants were asked to identify a target sound /aSa/ among 11 alternatives. A race model was applied to evaluate AV integration. In the second experiment, identification accuracies were measured using a closed set of consonants and an open set of consonant-nucleus-consonant words. The authors quantified AV integration using a combination of a probability model and a cue integration model (which model participants' AV accuracy by assuming no or optimal integration, respectively). The results found that experienced CI listeners showed no better AV integration than their similarly aged NH adults. Further, there was no significant difference in AV integration between the younger and older NH adults
- ItemComparing fNIRS signal qualities between approaches with and without short channels(Plos One, 2020-12) Zhou, Xin; Sobczak, Gabriel; McKay, Colette; Litovsky, RuthFunctional near-infrared spectroscopy (fNIRS) is a non-invasive technique used to measure changes in oxygenated (HbO) and deoxygenated (HbR) hemoglobin, related to neuronal activity. fNIRS signals are contaminated by the systemic responses in the extracerebral tissue (superficial layer) of the head, as fNIRS uses a back-reflection measurement. Using shorter channels that are only sensitive to responses in the extracerebral tissue but not in the deeper layers where target neuronal activity occurs has been a 'gold standard' to reduce the systemic responses in the fNIRS data from adults. When shorter channels are not available or feasible for implementation, an alternative, i.e., anti-correlation (Anti-Corr) method has been adopted. To date, there has not been a study that directly assesses the outcomes from the two approaches. In this study, we compared the Anti-Corr method with the 'gold standard' in reducing systemic responses to improve fNIRS neural signal qualities. We used eight short channels (8-mm) in a group of adults, and conducted a principal component analysis (PCA) to extract two components that contributed the most to responses in the 8 short channels, which were assumed to contain the global components in the extracerebral tissue. We then used a general linear model (GLM), with and without including event-related regressors, to regress out the 2 principal components from regular fNIRS channels (30 mm), i.e., two GLM-PCA methods. Our results found that, the two GLM-PCA methods showed similar performance, both GLM-PCA methods and the Anti-Corr method improved fNIRS signal qualities, and the two GLM-PCA methods had better performance than the Anti-Corr method.
- ItemConnectivity in Language Areas of the Brain in Cochlear Implant Users as Revealed by fNIRS(Springer International Publishing, 2015-04) McKay, Colette; Shah, Adnan; Seghouane, Abd-Krim; Zhou, Xin; Cross, William; Litovsky, RuthMany studies, using a variety of imaging techniques, have shown that deafness induces functional plasticity in the brain of adults with late-onset deafness, and in children changes the way the auditory brain develops. Cross modal plasticity refers to evidence that stimuli of one modality (e.g. vision) activate neural regions devoted to a different modality (e.g. hearing) that are not normally activated by those stimuli. Other studies have shown that multimodal brain networks (such as those involved in language comprehension, and the default mode network) are altered by deafness, as evidenced by changes in patterns of activation or connectivity within the networks. In this paper, we summarise what is already known about brain plasticity due to deafness and propose that functional near-infra-red spectroscopy (fNIRS) is an imaging method that has potential to provide prognostic and diagnostic information for cochlear implant users. Currently, patient history factors account for only 10 % of the variation in post-implantation speech understanding, and very few post-implantation behavioural measures of hearing ability correlate with speech understanding. As a non-invasive, inexpensive and user-friendly imaging method, fNIRS provides an opportunity to study both pre- and post-implantation brain function. Here, we explain the principle of fNIRS measurements and illustrate its use in studying brain network connectivity and function with example data
- ItemCortical fNIRS Responses Can Be Better Explained by Loudness Percept than Sound Intensity(Wolters Kluwer Health, Inc, 2020-01) Weder, Stefan; Shoushtarian, Mehrnaz; Olivares, Virginia; Zhou, Xin; Innes-Brown, Hamish; McKay, ColetteOBJECTIVES: Functional near-infrared spectroscopy (fNIRS) is a brain imaging technique particularly suitable for hearing studies. However, the nature of fNIRS responses to auditory stimuli presented at different stimulus intensities is not well understood. In this study, we investigated whether fNIRS response amplitude was better predicted by stimulus properties (intensity) or individually perceived attributes (loudness). DESIGN: Twenty-two young adults were included in this experimental study. Four different stimulus intensities of a broadband noise were used as stimuli. First, loudness estimates for each stimulus intensity were measured for each participant. Then, the 4 stimulation intensities were presented in counterbalanced order while recording hemoglobin saturation changes from cortical auditory brain areas. The fNIRS response was analyzed in a general linear model design, using 3 different regressors: a non-modulated, an intensity-modulated, and a loudness-modulated regressor. RESULTS: Higher intensity stimuli resulted in higher amplitude fNIRS responses. The relationship between stimulus intensity and fNIRS response amplitude was better explained using a regressor based on individually estimated loudness estimates compared with a regressor modulated by stimulus intensity alone. CONCLUSIONS: Brain activation in response to different stimulus intensities is more reliant upon individual loudness sensation than physical stimulus properties. Therefore, in measurements using different auditory stimulus intensities or subjective hearing parameters, loudness estimates should be examined when interpreting results.
- ItemCortical Processing Related to Intensity of a Modulated Noise Stimulus—a Functional Near-Infrared Study(SpringerLink, 2018-04) Weder, Stefan; Zhou, Xin; Shoushtarian, Mehrnaz; Innes-Brown, Hamis; McKay, ColetteSound intensity is a key feature of auditory signals. A profound understanding of cortical processing of this feature is therefore highly desirable. This study investigates whether cortical functional near-infrared spectroscopy (fNIRS) signals reflect sound intensity changes and where on the brain cortex maximal intensity-dependent activations are located. The fNIRS technique is particularly suitable for this kind of hearing study, as it runs silently. Twenty-three normal hearing subjects were included and actively participated in a counterbalanced block design task. Four intensity levels of a modulated noise stimulus with long-term spectrum and modulation characteristics similar to speech were applied, evenly spaced from 15 to 90 dB SPL. Signals from auditory processing cortical fields were derived from a montage of 16 optodes on each side of the head. Results showed that fNIRS responses originating from auditory processing areas are highly dependent on sound intensity level: higher stimulation levels led to higher concentration changes. Caudal and rostral channels showed different waveform morphologies, reflecting specific cortical signal processing of the stimulus. Channels overlying the supramarginal and caudal superior temporal gyrus evoked a phasic response, whereas channels over Broca's area showed a broad tonic pattern. This data set can serve as a foundation for future auditory fNIRS research to develop the technique as a hearing assessment tool in the normal hearing and hearing-impaired populations.
- ItemCortical Speech Processing in Postlingually Deaf Adult Cochlear Implant Users, as Revealed by Functional Near-Infrared Spectroscopy(SAGE, 2018-07) Zhou, Xin; Seghouane, Abd-Krim; Shah, Adnan; Innes-Brown, Hamish; Cross, Will; Litovsky, Ruth; McKay, ColetteAn experiment was conducted to investigate the feasibility of using functional near-infrared spectroscopy (fNIRS) to image cortical activity in the language areas of cochlear implant (CI) users and to explore the association between the activity and their speech understanding ability. Using fNIRS, 15 experienced CI users and 14 normal-hearing participants were imaged while presented with either visual speech or auditory speech. Brain activation was measured from the prefrontal, temporal, and parietal lobe in both hemispheres, including the language-associated regions. In response to visual speech, the activation levels of CI users in an a priori region of interest (ROI)—the left superior temporal gyrus or sulcus—were negatively correlated with auditory speech understanding. This result suggests that increased cross-modal activity in the auditory cortex is predictive of poor auditory speech understanding. In another two ROIs, in which CI users showed significantly different mean activation levels in response to auditory speech compared with normal-hearing listeners, activation levels were significantly negatively correlated with CI users’ auditory speech understanding. These ROIs were located in the right anterior temporal lobe (including a portion of prefrontal lobe) and the left middle superior temporal lobe. In conclusion, fNIRS successfully revealed activation patterns in CI users associated with their auditory speech understanding.