Browsing by Author "Thompson, Alex"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemCombined optogenetic and electrical stimulation of auditory neurons increases effective stimulation frequency—an in vitro study(IOP Publishing, 2020-01) Hart, William; Richardson, Rachael; Kameneva, Tatiana; Thompson, Alex; Wise, Andrew; Fallon, James; Stoddart, Paul; Needham, KarinaOBJECTIVE: The performance of neuroprostheses, including cochlear and retinal implants, is currently constrained by the spatial resolution of electrical stimulation. Optogenetics has improved the spatial control of neurons in vivo but lacks the fast-temporal dynamics required for auditory and retinal signalling. The objective of this study is to demonstrate that combining optical and electrical stimulation in vitro could address some of the limitations associated with each of the stimulus modes when used independently. APPROACH: The response of murine auditory neurons expressing ChR2-H134 to combined optical and electrical stimulation was characterised using whole cell patch clamp electrophysiology. MAIN RESULTS: Optogenetic costimulation produces a three-fold increase in peak firing rate compared to optical stimulation alone and allows spikes to be evoked by combined subthreshold optical and electrical inputs. Subthreshold optical depolarisation also facilitated spiking in auditory neurons for periods of up to 30 ms without evidence of wide-scale Na+ inactivation. Significance These findings may contribute to the development of spatially and temporally selective optogenetic-based neuroprosthetics and complement recent developments in "fast opsins".
- ItemPlatinum dissolution and tissue response following long-term electrical stimulation at high charge densities(IOP Publishing, 2021-02) Shepherd, Robert; Carter, Paul; Dalrymple, Ashley; Enke, Ya Lang; Wise, Andrew; Nguyen, Trung; Firth, James; Thompson, Alex; Fallon, JamesOBJECTIVE: Established guidelines for safe levels of electrical stimulation for neural prostheses are based on a limited range of the stimulus parameters used clinically. Recent studies have reported particulate platinum (Pt) associated with long-term clinical use of these devices, highlighting the need for more carefully defined safety limits. We previously reported no adverse effects of Pt corrosion products in the cochleae of guinea pigs following 4 weeks of electrical stimulation using charge densities far greater than the published safe limits for cochlear implants. The present study examines the histopathological effects of Pt within the cochlea following continuous stimulation at a charge density well above the defined safe limits for periods up to 6 months. APPROACH: Six cats were bilaterally implanted with Pt electrode arrays and unilaterally stimulated using charge balanced current pulses at a charge density of 267 C/cm2/phase using a tripolar electrode configuration. Electrochemical measurements were made throughout the implant duration and evoked potentials recorded at the outset and on completion of the stimulation program. Cochleae were examined histologically for particulate Pt, tissue response, and auditory nerve survival; electrodes were examined for surface corrosion; and cochlea, brain, kidney, and liver tissue analysed for trace levels of Pt. MAIN RESULTS: Chronic stimulation resulted in both a significant increase in tissue response and particulate Pt within the tissue capsule surrounding the electrode array compared with implanted, unstimulated control cochleae. Importantly, there was no stimulus-induced loss of auditory neurons or increase in evoked potential thresholds. Stimulated electrodes were significantly more corroded compared with unstimulated electrodes. Trace analysis revealed Pt in both stimulated and control cochleae although significantly greater levels were detected within stimulated cochleae. There was no evidence of Pt in brain or liver; however, trace levels of Pt were recorded in the kidneys of two animals. Finally, increased charge storage capacity and charge injection limit reflected the more extensive electrode corrosion associated with stimulated electrodes. SIGNIFICANCE: Long-term electrical stimulation of Pt electrodes at a charge density well above existing safety limits and nearly an order of magnitude higher than levels used clinically, does not adversely affect the auditory neuron population or reduce neural function, despite a stimulus-induced tissue response and the accumulation of Pt corrosion product. The mechanism resulting in Pt within the unstimulated cochlea is unclear, while the level of Pt observed systemically following stimulation at these very high charge densities does not appear to be of clinical significance.
- ItemSelective recording of physiologically evoked neural activity in a mixed autonomic nerve using a minimally invasive array.(APL Bioengineering, 2023-12) Payne, Sophie C; Osborne, Peregrine B; Thompson, Alex; Eiber, Calvin D; Keast, Janet R; Fallon, James BReal-time closed-loop control of neuromodulation devices requires long-term monitoring of neural activity in the peripheral nervous system. Although many signal extraction methods exist, few are both clinically viable and designed for extracting small signals from fragile peripheral visceral nerves. Here, we report that our minimally invasive recording and analysis technology extracts low to negative signal to noise ratio (SNR) neural activity from a visceral nerve with a high degree of specificity for fiber type and class. Complex activity was recorded from the rat pelvic nerve that was physiologically evoked during controlled bladder filling and voiding, in an extensively characterized model that provided an excellent test bed to validate our technology. Urethane-anesthetized male rats (n = 12) were implanted with a four-electrode planar array and the bladder instrumented for continuous-flow cystometry, which measures urodynamic function by recording bladder pressure changes during constant infusion of saline. We demonstrated that differential bipolar recordings and cross-correlation analyses extracts afferent and efferent activity, and discriminated between subpopulations of fibers based on conduction velocity. Integrated Aδ afferent fiber activity correlated with bladder pressure during voiding (r: 0.66 ± 0.06) and was not affected by activating nociceptive afferents with intravesical capsaicin (r: 0.59 ± 0.14, = 0.54, and n = 3). Collectively, these results demonstrate our minimally invasive recording and analysis technology is selective in extracting mixed neural activity with low/negative SNR. Furthermore, integrated afferent activity reliably correlates with bladder pressure and is a promising first step in developing closed-loop technology for bladder control.
- ItemShepherd, R. K., P. Carter, Y. L. Enke, A. Thompson, B. Flynn, E. Trang, A. Dalrymple, and J. B. Fallon. 2020. Chronic intracochlear electrical stimulation at high charge densities: Reducing platinum dissolution(IOP Publishing, 2020-09) Shepherd, Robert; Carter, Paul; Enke, Ya Lang; Thompson, Alex; Flynn, Brianna; Trang, Ella; Dalrymple, Ashley; Fallon, JamesOBJECTIVE: Cochleae of long-term cochlear implant users have shown evidence of particulate platinum (Pt) corroded from the surface of Pt electrodes. The pathophysiological effect of Pt within the cochlea has not been extensively investigated. We previously evaluated the effects of Pt corrosion at high charge densities and reported negligible pathophysiological impact. The present study extends this work by examining techniques that may reduce Pt corrosion. APPROACH: Deafened guinea pigs were continuously stimulated for 28 days using biphasic current pulses at extreme charge densities using: (i) electrode shorting; (ii) electrode shorting with capacitive coupling (CC); or (iii) electrode shorting with alternating leading phase (AP). On completion of stimulation, cochleae were examined for corrosion product, tissue response, auditory nerve (AN) survival and trace levels of Pt; and electrodes examined for surface corrosion. MAIN RESULTS: Pt corrosion was evident at > 200 μC/cm2/phase; the amount dependent on charge density (p < 0.01) and charge recovery technique (p < 0.01); reduced corrosion was apparent using CC. Tissue response increased with charge density (p < 0.007); cochleae stimulated at > 200 μC/cm2/phase exhibited a vigorous response including a focal region of necrosis and macrophages. Notably, tissue response was not dependent on the charge recovery technique (p = 0.56). Despite stimulation at high charge densities resulting in significant levels of Pt corrosion, there was no stimulus induced loss of ANs. SIGNIFICANCE: Significant increases in tissue response and Pt corrosion were observed following stimulation at high charge densities. Charge recovery using CC, and to a lesser extent AP, reduced the amount of Pt corrosion but not the tissue response. Stimulation at change densities an order of magnitude higher than those used when programming cochlear implant recipients in the clinic, produced a vigorous tissue response and corrosion products without evidence of neural loss.