Browsing by Author "Robert, Shepherd"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemEffects of chronic cochlear electrical stimulation after an extended period of profound deafness on primary auditory cortex organization in cats(John Wiley & Sons Inc, 2014-03) Fallon, James; Robert, Shepherd; Irvine, DexterExtended periods of deafness have profound effects on central auditory system function and organization. Neonatal deafening results in loss of the normal cochleotopic organization of the primary auditory cortex (AI), but environmentally-derived intracochlear electrical stimulation, via a cochlear implant, initiated shortly after deafening, can prevent this loss. We investigated whether such stimulation initiated after an extended period of deafness can restore cochleotopy. In two groups of neonatally-deafened cats, a multi-channel intracochlear electrode array was implanted at 8 weeks of age. One group received only minimal stimulation, associated with brief recordings at 4-6-week intervals, over the following 6 months to check the efficacy of the implant. In the other group, this 6-month period was followed by 6 months of near-continuous intracochlear electrical stimulation from a modified clinical cochlear implant system. We recorded multi-unit clusters in the auditory cortex and used two different methods to define the region of interest in the putative AI. There was no evidence of cochleotopy in any of the minimally stimulated animals, confirming our earlier finding. In three of six chronically stimulated cats there was clear evidence of AI cochleotopy, and in a fourth cat in which the majority of penetrations were in the anterior auditory field there was clear evidence of cochleotopy in that field. The finding that chronic intracochlear electrical stimulation after an extended period of deafness is able to restore cochleotopy in some (but not all) cases has implications for the performance of patients implanted after an extended period of deafness.
- ItemSpiral ganglion neuron survival and function in the deafened cochlea following chronic neurotrophic treatment(Elsevier, 2011-12) Landry, Thomas; Wise, Andrew; Fallon, James; Robert, ShepherdCochlear implants electrically stimulate residual spiral ganglion neurons (SGNs) to provide auditory cues for the severe-profoundly deaf. However, SGNs gradually degenerate following cochlear hair cell loss, leaving fewer neurons available for stimulation. Providing an exogenous supply of neurotrophins (NTs) has been shown to prevent SGN degeneration, and when combined with chronic intracochlear electrical stimulation (ES) following a short period of deafness (5 days), may also promote the formation of new neurons. The present study assessed the histopathological response of guinea pig cochleae treated with NTs (brain-derived neurotrophic factor and neurotrophin-3) with and without ES over a four week period, initiated two weeks after deafening. Results were compared to both NT alone and artificial perilymph (AP) treated animals. AP/ES treated animals exhibited no evidence of SGN rescue compared with untreated deafened controls. In contrast, NT administration showed a significant SGN rescue effect in the lower and middle cochlear turns (two-way ANOVA, p < 0.05) compared with AP-treated control animals. ES in combination with NT did not enhance SGN survival compared with NT alone. SGN function was assessed by measuring electrically-evoked auditory brainstem response (EABR) thresholds. EABR thresholds following NT treatment were significantly lower than animals treated with AP (two-way ANOVA, p ¼ 0.033). Finally, the potential for induced neurogenesis following the combined treatment was investigated using a marker of DNA synthesis. However, no evidence of neurogenesis was observed in the SGN population. The results indicate that chronic NT delivery to the cochlea may be beneficial to cochlear implant patients by increasing the number of viable SGNs and decreasing activation thresholds compared to chronic ES alone.