Browsing by Author "Meffin, Hamish"
Now showing 1 - 15 of 15
Results Per Page
Sort Options
- ItemAn all-diamond, hermetic electrical feedthrough array for a retinal prosthesis(Elsevier, 2014-01) Ganesan, Kumaravelu; Garrett, David; Ahnood, Arman; Shivdasani, Mohit; Tong, Wei; Turnley, Ann; Fox, Kate; Meffin, Hamish; Prawer, StevenThe interface between medical implants and the human nervous system is rapidly becoming more and more complex. This rise in complexity is driving the need for increasing numbers of densely packed electrical feedthroughs to carry signals to and from implanted devices. This is particularly crucial in the field of neural prosthesis where high resolution stimulating or recording arrays near peripheral nerves or in the brain could dramatically improve the performance of these devices. Here we describe a flexible strategy for implementing high density, high count arrays of hermetic electrical feedthroughs by forming conducting nitrogen doped nanocrystalline diamond channels within an insulating polycrystalline diamond substrate. A unique feature of these arrays is that the feedthroughs can themselves be used as stimulating electrodes for neural tissue. Our particular application is such a feedthrough, designed as a component of a retinal implant to restore vision to the blind. The hermeticity of the feedthroughs means that the array can also form part of an implantable capsule which can interface directly with internal electronic chips. The hermeticity of the array is demonstrated by helium leak tests and electrical and electrochemical characterisation of the feedthroughs is described. The nitrogen doped nanocrystalline diamond forming the electrical feedthroughs is shown to be non cyctotoxic. New fabrication strategies, such as the one described here, combined with the exceptional biostability of diamond can be exploited to generate a range of biomedical implants that last for the lifetime of the user without fear of degradation.
- ItemBroadband Onset Inhibition Can Suppress Spectral Splatter in the Auditory Brainstem(2015-05-15) Spencer, Martin; Nayagam, David; Clarey, Janine; Paolini, Antonio; Meffin, Hamish; Burkitt, Anthony; Grayden, DavidIn vivo intracellular responses to auditory stimuli revealed that, in a particular population of cells of the ventral nucleus of the lateral lemniscus (VNLL) of rats, fast inhibition occurred before the first action potential. These experimental data were used to constrain a leaky integrate-and-fire (LIF) model of the neurons in this circuit. The post-synaptic potentials of the VNLL cell population were characterized using a method of triggered averaging. Analysis suggested that these inhibited VNLL cells produce action potentials in response to a particular magnitude of the rate of change of their membrane potential. The LIF model was modified to incorporate the VNLL cells’ distinctive action potential production mechanism. The model was used to explore the response of the population of VNLL cells to simple speech-like sounds. These sounds consisted of a simple tone modulated by a saw tooth with exponential decays, similar to glottal pulses that are the repeated impulses seen in vocalizations. It was found that the harmonic component of the sound was enhanced in the VNLL cell population when compared to a population of auditory nerve fibers. This was because the broadband onset noise, also termed spectral splatter, was suppressed by the fast onset inhibition. This mechanism has the potential to greatly improve the clarity of the representation of the harmonic content of certain kinds of natural sounds.
- ItemDevelopment of a Magnetic Attachment Method for Bionic Eye Applications(Wiley Periodicals, Inc., 2016) Fox, Kate; Meffin, Hamish; Burns, Owen; Abbott, Carla; Allen, Penelope; Opie, Nicholas; McGowan, Ceara; Yeoh, Jonathon; Ahnood, Arman; Luu, Chi; Cicione, Rosemary; Saudners, Alexia; McPhedran, Michelle; Cardamone, Lisa; Villalobos, Joel; Garrett, David; Nayagam, David; Apollo, Nicholas; Ganesan, Kumaravelu; Shivdasani, Mohit; Stacey, Alastair; Escudie, Mathilde; Lichter, Samantha; Shepherd, Robert; Prawer, StephenSuccessful visual prostheses require stable, long-term attachment. Epiretinal prostheses, in particular, require attachment methods to fix the prosthesis onto the retina. The most common method is fixation with a retinal tack; however, tacks cause retinal trauma, and surgical proficiency is important to ensure optimal placement of the prosthesis near the macula. Accordingly, alternate attachment methods are required. In this study, we detail a novel method of magnetic attachment for an epiretinal prosthesis using two prostheses components positioned on opposing sides of the retina. The magnetic attachment technique was piloted in a feline animal model (chronic, nonrecovery implantation). We also detail a new method to reliably control the magnet coupling force using heat. It was found that the force exerted upon the tissue that separates the two components could be minimized as the measured force is proportionately smaller at the working distance. We thus detail, for the first time, a surgical method using customized magnets to position and affix an epiretinal prosthesis on the retina. The position of the epiretinal prosthesis is reliable, and its location on the retina is accurately controlled by the placement of a secondary magnet in the suprachoroidal location. The electrode position above the retina is less than 50 microns at the center of the device, although there were pressure points seen at the two edges due to curvature misalignment. The degree of retinal compression found in this study was unacceptably high; nevertheless, the normal structure of the retina remained intact under the electrodes.
- ItemElectrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis(Elsevier, 2012-08) Hadjinicolaou, Alex; Leung, Ronald; Garrett, David; Ganesan, Kumaravelu; Fox, Kate; Nayagam, David; Shivdasani, Mohit; Meffin, Hamish; Ibbotson, Michael; Prawer, Steven; O'Brien, Brendan
- ItemHermetic diamond capsules for biomedical implants enabled by gold active braze alloys(Elsevier, Ltd., 2015-03) Lichter, Samantha; Escudie, Mathilde; Stacey, Alastair; Ganesan, Kumaravelu; Fox, Kate; Ahnood, Arman; Apollo, Nicholas; Kua, Dunstan; Lee, Aaron; McGowan, Ceara; Saunders, Alexia; Burns, Owen; Nayagam, David; Williams, Richard; Garrett, David; Meffin, Hamish; Prawer, StephenAs the field of biomedical implants matures the functionality of implants is rapidly increasing. In the field of neural prostheses this is particularly apparent as researchers strive to build devices that interact with highly complex neural systems such as vision, hearing, touch and movement. A retinal implant, for example, is a highly complex device and the surgery, training and rehabilitation requirements involved in deploying such devices are extensive. Ideally, such devices will be implanted only once and will continue to function effectively for the lifetime of the patient. The first and most pivotal factor that determines device longevity is the encapsulation that separates the sensitive electronics of the device from the biological environment. This paper describes the realisation of a free standing device encapsulation made from diamond, the most impervious, long lasting and biochemically inert material known. A process of laser micro-machining and brazing is described detailing the fabrication of hermetic electrical feedthroughs and laser weldable seams using a 96.4% gold active braze alloy, another material renowned for biochemical longevity. Accelerated ageing of the braze alloy, feedthroughs and hermetic capsules yielded no evidence of corrosion and no loss of hermeticity. Samples of the gold braze implanted for 15 weeks, in vivo, caused minimal histopathological reaction and results were comparable to those obtained from medical grade silicone controls. The work described represents a first account of a free standing, fully functional hermetic diamond encapsulation for biomedical implants, enabled by gold active alloy brazing and laser micro-machining.
- ItemIn vivo biocompatibility of boron doped and nitrogen included conductive-diamond for use in medical implants(John Wiley & Sons Inc, 2015-01) Garrett, David; Saunders, Alexia; McGowan, Ceara; Specks, Joscha; Ganesan, Kumaravelu; Meffin, Hamish; Williams, Richard; Nayagam, DavidRecently, there has been interest in investigating diamond as a material for use in biomedical implants. Diamond can be rendered electrically conducting by doping with boron or nitrogen. This has led to inclusion of boron doped and nitrogen included diamond elements as electrodes and/or feedthroughs for medical implants. As these conductive device elements are not encapsulated, there is a need to establish their clinical safety for use in implants. This article compares the biocompatibility of electrically conducting boron doped diamond (BDD) and nitrogen included diamond films and electrically insulating poly crystalline diamond films against a silicone negative control and a BDD sample treated with stannous octoate as a positive control. Samples were surgically implanted into the back muscle of a guinea pig for a period of 4-15 weeks, excised and the implant site sectioned and submitted for histological analysis. All forms of diamond exhibited a similar or lower thickness of fibrotic tissue encapsulating compared to the silicone negative control samples. All forms of diamond exhibited similar or lower levels of acute, chronic inflammatory, and foreign body responses compared to the silicone negative control indicating that the materials are well tolerated in vivo. (c) 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2015.
- ItemIn vivo biocompatibility of boron doped and nitrogen included conductive-diamond for use in medical implants(Wiley Online Library, 2015-01-21) Garrett, David; Saunders, Alexia; McGowan, Ceara; Specks, Joshua; Ganesan, Kumaravelu; Meffin, Hamish; Williams, Richard; Nayagam, DavidRecently, there has been interest in investigating diamond as a material for use in biomedical implants. Diamond can be rendered electrically conducting by doping with boron or nitrogen. This has led to inclusion of boron doped and nitrogen included diamond elements as electrodes and/or feedthroughs for medical implants. As these conductive device elements are not encapsulated, there is a need to establish their clinical safety for use in implants. This article compares the biocompatibility of electrically conducting boron doped diamond (BDD) and nitrogen included diamond films and electrically insulating poly crystalline diamond films against a silicone negative control and a BDD sample treated with stannous octoate as a positive control. Samples were surgically implanted into the back muscle of a guinea pig for a period of 4-15 weeks, excised and the implant site sectioned and submitted for histological analysis. All forms of diamond exhibited a similar or lower thickness of fibrotic tissue encapsulating compared to the silicone negative control samples. All forms of diamond exhibited similar or lower levels of acute, chronic inflammatory, and foreign body responses compared to the silicone negative control indicating that the materials are well tolerated in vivo.
- ItemIn Vivo Feasibility of Epiretinal Stimulation Using Ultrananocrystalline Diamond 1 Electrodes(IOP Publishing, 2020-07) Shivdasani, Mohit; Evans, Mihailo; Burns, Owen; Yeoh, Jonathon; Allen, Penelope; Nayagam, David; Villalobos, Joel; Abbott, Carla; Luu, Chi; Opie, Nicholas; Sabu, Anu; Saunders, Alexia; McPhedran, Michelle; Cardamone, Lisa; McGowan, Ceara; Maxim, Vanessa; Williams, Richard; Fox, Kate; Cicione, Rosemary; Garrett, David; Ahnood, Arman; Ganesan, Kumaravelu; Meffin, Hamish; Burkitt, Anthony; Prawer, Steven; Williams, Chris; Shepherd, RobertPURPOSE: Due to their increased proximity to retinal ganglion cells (RGCs), epiretinal visual prostheses present the opportunity for eliciting phosphenes with low thresholds through direct RGC activation. This study characterised the in vivo performance of a novel prototype monolithic epiretinal prosthesis, containing Nitrogen incorporated ultrananocrystalline (N-UNCD) diamond electrodes. METHODS: A prototype implant containing up to twenty-five 120×120 µm N-UNCD electrodes was implanted into 16 anaesthetised cats and attached to the retina either using a single tack or via magnetic coupling with a suprachoroidally placed magnet. Multiunit responses to retinal stimulation using charge-balanced biphasic current pulses were recorded acutely in the visual cortex using a multichannel planar array. Several stimulus parameters were varied including; the stimulating electrode, stimulus polarity, phase duration, return configuration and the number of electrodes stimulated simultaneously. RESULTS: The rigid nature of the device and its form factor necessitated complex surgical procedures. Surgeries were considered successful in 10/16 animals and cortical responses to single electrode stimulation obtained in 8 animals. Clinical imaging and histological outcomes showed severe retinal trauma caused by the device in-situ in many instances. Cortical measures were found to significantly depend on the surgical outcomes of individual experiments, phase duration, return configuration and the number of electrodes stimulated simultaneously, but not stimulus polarity. Cortical thresholds were also found to increase over time within an experiment. CONCLUSIONS: The study successfully demonstrated that an epiretinal prosthesis containing diamond electrodes could produce cortical activity with high precision, albeit only in a small number of cases. Both surgical approaches were highly challenging in terms of reliable and consistent attachment to and stabilisation against the retina, and often resulted in severe retinal trauma. There are key challenges (device form factor and attachment technique) to be resolved for such a device to progress towards clinical application, as current surgical techniques are unable to address these issues.
- ItemAn investigation of dendritic delay in octopus cells of the mammalian cochlear nucleus(Frontiers in Computational Neuroscience, 2012-10-22) Spencer, Martin; Grayden, David; Bruce, Ian; Meffin, Hamish; Burkitt, AnthonyOctopus cells, located in the mammalian auditory brainstem, receive their excitatory synaptic input exclusively from auditory nerve fibers (ANFs). They respond with accurately timed spikes but are broadly tuned for sound frequency. Since the representation of information in the auditory nerve is well understood, it is possible to pose a number of question about the relationship between the intrinsic electrophysiology, dendritic morphology, synaptic connectivity, and the ultimate functional role of octopus cells in the brainstem. This study employed a multi-compartmental Hodgkin-Huxley model to determine whether dendritic delay in octopus cells improves synaptic input coincidence detection in octopus cells by compensating for the cochlear traveling wave delay. The propagation time of post-synaptic potentials from synapse to soma was investigated. We found that the total dendritic delay was approximately 0.275 ms. It was observed that low-threshold potassium channels in the dendrites reduce the amplitude dependence of the dendritic delay of post-synaptic potentials. As our hypothesis predicted, the model was most sensitive to acoustic onset events, such as the glottal pulses in speech when the synaptic inputs were arranged such that the models dendritic delay compensated for the cochlear travelling wave delay across the ANFs. The range of sound frequency input from ANFs was also investigated. The results suggested that input octopus cells is dominated by high frequency ANfs.
- ItemModelling extracellular electrical stimulation: part 3. Derivation and interpretation of neural tissue equations(IOP Publishing, 2014-11) Meffin, Hamish; Tahayori, Bahman; Sergeev, Evgeni; Mareels, Iven; Grayden, David; Burkitt, AnthonyOBJECTIVE: A common approach in modelling extracellular electrical stimulation is to represent neural tissue by a volume conductor when calculating the activating function as the driving term in a cable equation for the membrane potential. This approach ignores the cellular composition of tissue, including the neurites and their combined effect on the extracellular potential. This has a number of undesirable consequences. First, the two natural and equally valid choices of boundary conditions for the cable equation (i.e. using either voltage or current) lead to two mutually inconsistent predictions of the membrane potential. Second, the spatio-temporal distribution of the extracellular potential can be strongly affected by the combined cellular composition of the tissue. In this paper, we develop a mean field volume conductor theory to overcome these shortcomings of available models. APPROACH: This method connects the microscopic properties of the constituent fibres to the macroscopic electrical properties of the tissue by introducing an admittivity kernel for the neural tissue that is non-local, non-instantaneous and anisotropic. This generalizes the usual tissue conductivity. A class of bidomain models that is mathematically equivalent to this class of self-consistent volume conductor models is also presented. The bidomain models are computationally convenient for simulating the activation map of neural tissue using numerical methods such as finite element analysis. MAIN RESULTS: The theory is first developed for tissue composed of identical, parallel fibres and then extended to general neural tissues composed of mixtures of neurites with different and arbitrary orientations, arrangements and properties. Equations describing the extracellular and membrane potential for the longitudinal and transverse modes of stimulation are derived. SIGNIFICANCE: The theory complements our earlier work, which developed extensions to cable theory for the micro-scale equations of neural stimulation that apply to individual fibres. The modelling framework provides a number of advantages over other approaches currently adopted in the literature and, therefore, can be used to accurately estimate the membrane potential generated by extracellular electrical stimulation.
- ItemModelling extracellular electrical stimulation: part 4. Effect of the cellular composition of neural tissue on its spatio-temporal filtering properties(IOP Publishing, 2014-11) Tahayori, Bahman; Meffin, Hamish; Sergeev, Evgeni; Mareels, Iven; Burkitt, Anthony; Grayden, DavidOBJECTIVE: The objective of this paper is to present a concrete application of the cellular composite model for calculating the membrane potential, described in an accompanying paper. APPROACH: A composite model that is used to determine the membrane potential for both longitudinal and transverse modes of stimulation is demonstrated. MAIN RESULTS: Two extreme limits of the model, near-field and far-field for an electrode close to or distant from a neuron, respectively, are derived in this paper. Results for typical neural tissue are compared using the composite, near-field and far-field models as well as the standard isotropic volume conductor model. The self-consistency of the composite model, its spatial profile response and the extracellular potential time behaviour are presented. The magnitudes of the longitudinal and transverse components for different values of electrode-neurite separations are compared. SIGNIFICANCE: The unique features of the composite model and its simplified versions can be used to accurately estimate the spatio-temporal response of neural tissue to extracellular electrical stimulation.
- ItemNeural Responses to Multielectrode Stimulation of Healthy and Degenerate Retina(IOVS, 2017-07) Halupka, Kerry; Abbott, Carla; Wong, Yan; Cloherty, Shaun; Grayden, David; Burkitt, Anthony; Sergeev, Evgeni; Brandli, Alice; Allen, Penelope; Meffin, Hamish; Shivdasani, MohitPurpose: Simultaneous stimulation of multiple retinal electrodes in normally sighted animals shows promise in improving the resolution of retinal prostheses. However, the effects of simultaneous stimulation on degenerate retinae remain unknown. Therefore, we investigated the characteristics of cortical responses to multielectrode stimulation of the degenerate retina. Methods: Four adult cats were bilaterally implanted with retinal electrode arrays in the suprachoroidal space after unilateral adenosine triphosphate (ATP)-induced retinal photoreceptor degeneration. Functional and structural changes were characterized by using electroretinogram a-wave amplitude and optical coherence tomography. Multiunit activity was recorded from both hemispheres of the visual cortex. Responses to single- and multielectrode stimulation of the ATP-injected and fellow control eyes were characterized and compared. Results: The retinae of ATP-injected eyes displayed structural and functional changes consistent with mid- to late-stage photoreceptor degeneration and remodeling. Responses to multielectrode stimulation of the ATP-injected eyes exhibited shortened latencies, lower saturated spike counts, and higher thresholds, compared to stimulation of the fellow control eyes. Electrical receptive field sizes were significantly larger in the ATP-injected eye than in the control eye, and positively correlated with the extent of degeneration. Conclusions: Significant differences exist between cortical responses to stimulation of healthy and degenerate retinae. Our results highlight the importance of using a retinal degeneration model when evaluating the efficacy of novel stimulation paradigms.
- ItemPrediction of cortical responses to simultaneous electrical stimulation of the retina(IOP Publishing, 2016-11) Halupka, Kerry; Shivdasani, Mohit; Cloherty, Shaun; Grayden, David; Wong, Yan; Burkitt, Anthony; Meffin, HamishOBJECTIVE: Simultaneous electrical stimulation of multiple electrodes has shown promise in diversifying the responses that can be elicited by retinal prostheses compared to interleaved single electrode stimulation. However, the effects of interactions between electrodes are not well understood and clinical trials with simultaneous stimulation have produced inconsistent results. We investigated the effects of multiple electrode stimulation of the retina by developing a model of cortical responses to retinal stimulation. APPROACH: Electrical stimuli consisting of temporally sparse, biphasic current pulses, with amplitudes sampled from a bi-dimensional Gaussian distribution, were simultaneously delivered to the retina across a 42-channel electrode array implanted in the suprachoroidal space of anesthetized cats. Visual cortex activity was recorded using penetrating microelectrode arrays. These data were used to identify a linear-nonlinear model of cortical responses to retinal stimulation. The ability of the model to generalize was tested by predicting responses to non-white patterned stimuli. MAIN RESULTS: The model accurately predicted two cortical activity measures: multi-unit neural responses and evoked potential responses to white noise stimuli. The model also provides information about electrical receptive fields, including the relative effects of each stimulating electrode on every recording site. SIGNIFICANCE: We have demonstrated a simple model that accurately describes cortical responses to simultaneous stimulation of a suprachoroidal retinal prosthesis. Overall, our results demonstrate that cortical responses to simultaneous multi-electrode stimulation of the retina are repeatable and predictable, and that interactions between electrodes during simultaneous stimulation are predominantly linear. The model shows promise for determining optimal stimulation paradigms for exploiting interactions between electrodes to shape neural activity, thereby improving outcomes for patients with retinal prostheses.
- ItemSpectral distribution of local field potential responses to electrical stimulation of the retina(IOP Publishing, 2016-03) Wong, Yan; Halupka, Kerry; Kameneva, Tatiana; Cloherty, Shaun; Grayden, David; Burkitt, Anthony; Meffin, Hamish; Shivdasani, MohitOBJECTIVE: Different frequency bands of the local field potential (LFP) have been shown to reflect neuronal activity occurring at varying cortical scales. As such, recordings of the LFP may offer a novel way to test the efficacy of neural prostheses and allow improvement of stimulation strategies via neural feedback. Here we use LFP measurements from visual cortex to characterize neural responses to electrical stimulation of the retina. We aim to show that the LFP is a viable signal that contains sufficient information to optimize the performance of sensory neural prostheses. APPROACH: Clinically relevant electrode arrays were implanted in the suprachoroidal space of one eye in four felines. LFPs were simultaneously recorded in response to stimulation of individual electrodes using penetrating microelectrode arrays from the visual cortex. The frequency response of each electrode was extracted using multi-taper spectral analysis and the uniqueness of the responses was determined via a linear decoder. MAIN RESULTS: We found that cortical LFPs are reliably modulated by electrical stimulation of the retina and that the responses are spatially localized. We further characterized the spectral distribution of responses, with maximum information being contained in the low and high gamma bands. Finally, we found that LFP responses are unique to a large range of stimulus parameters ( approximately 40) with a maximum conveyable information rate of 6.1 bits. SIGNIFICANCE: These results show that the LFP can be used to validate responses to electrical stimulation of the retina and we provide the first steps towards using these responses to provide more efficacious stimulation strategies.
- ItemSpike history neural response model(Springer US, 2015-06) Kameneva, Tatiana; Abramain, Miganoosh; Zarelli, Daniele; Nesic, Dragan; Burkitt, Anthony; Meffin, Hamish; Grayden, DavidThere is a potential for improved efficacy of neural stimulation if stimulation levels can be modified dynamically based on the responses of neural tissue in real time. A neural model is developed that describes the response of neurons to electrical stimulation and that is suitable for feedback control neuroprosthetic stimulation. Experimental data from NZ white rabbit retinae is used with a data-driven technique to model neural dynamics. The linear-nonlinear approach is adapted to incorporate spike history and to predict the neural response of ganglion cells to electrical stimulation. To validate the fitness of the model, the penalty term is calculated based on the time difference between each simulated spike and the closest spike in time in the experimentally recorded train. The proposed model is able to robustly predict experimentally observed spike trains.