Browsing by Author "May, Clive"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemMinimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity(Nature Publishing Group, 2016-02-08) Oxley, Thomas; Opie, Nicholas; John, Sam; Rindl, Gil; Ronayne, Stephen; Wheeler, Tracey; Judy, Jack; McDonald, Alan; Dornom, Anthony; Lovell, Timothy; Steward, Christopher; Garrett, David; Moffat, Bradford; Lui, Elaine; Yassi, Nawaf; Campbell, Bruce; Wong, Yan; Fox, Kate; Nurse, Ewan; Bennett, Iwan; Bauquier, Sebastien; Lyanage, Kishan; van de Nagel, Nicole; Perucca, Piero; Ahnood, Arman; Gill, Katherine; Yan, Bernard; Churilov, Leonid; French, Christopher; Desmond, Patricia; Horne, Malcolm; Kiers, Lynette; Prawer, Steven; Davis, Stephen; Burkitt, Anthony; Mitchell, Peter; Grayden, David; May, Clive; O'Brien, TerenceHigh-fidelity intracranial electrode arrays for recording and stimulating brain activity have facilitated major advances in the treatment of neurological conditions over the past decade. Traditional arrays require direct implantation into the brain via open craniotomy, which can lead to inflammatory tissue responses, necessitating development of minimally invasive approaches that avoid brain trauma. Here we demonstrate the feasibility of chronically recording brain activity from within a vein using a passive stent-electrode recording array (stentrode). We achieved implantation into a superficial cortical vein overlying the motor cortex via catheter angiography and demonstrate neural recordings in freely moving sheep for up to 190 d. Spectral content and bandwidth of vascular electrocorticography were comparable to those of recordings from epidural surface arrays. Venous internal lumen patency was maintained for the duration of implantation. Stentrodes may have wide ranging applications as a neural interface for treatment of a range of neurological conditions.
- ItemVagus nerve stimulation to treat inflammatory bowel disease: a chronic, preclinical safety study in sheep(Future Medicine, 2019-02) Payne, Sophie; Burns, Owen; Stebbing, Martin; Thomas, Ross; de Silva, Angel; Sedo, Alicia; Weissenborn, Frank; Hyakumura, Tomoko; Huynh, Mario; May, Clive; Williams, Richard; Furness, John; Fallon, James; Shepherd, RobertAim: Electrical stimulation of the left cervical vagus nerve is a feasible therapy for inflammatory bowel disease (IBD). However, due to the location of the electrode placement, stimulation is often associated with side effects. Methods: We developed a cuff electrode array, designed to be implanted onto the vagus nerve of the lower thorax or abdomen, below branches to vital organs, to minimize off-target effects to stimulation. Results: Following chronic implantation and electrical stimulation, electrodes remained functional and neural thresholds stable, while there were minimal off-target affects to stimulation. No nerve damage or corrosion of stimulated electrodes was observed. Conclusion: This novel electrode array, located on the vagus nerve below branches to vital organs, is a safe approach for the treatment of inflammatory bowel disease.