Browsing by Author "King, Elisha"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemGentamicin administration on the stapes footplate causes greater hearing loss and vestibulotoxicity than round window administration in guinea pigs.(Elsevier, 2013-10) King, Elisha; Salt, Alec; Kel, Gordana; Eastwood, Hayden; O'Leary, StephenClinically, gentamicin has been used extensively to treat the debilitating symptoms of Mèniére’s disease and is well known for its vestibulotoxic properties. Until recently, it was widely accepted that the round window membrane (RWM) was the primary entry route into the inner ear following intratympanic drug administration. In the current study, gentamicin was delivered to either the RWM or the stapes footplate of guinea pigs (GPs) to assess the associated hearing loss and histopathology associated with each procedure. Vestibulotoxicity of the utricular macula, saccular macula, and crista ampullaris in the posterior semicircular canal were assessed quantitatively with density counts of hair cells, supporting cells, and stereocilia in histological sections. Cochleotoxicity was assessed quantitatively by changes in threshold of auditory brainstem responses (ABR), along with hair cell and spiral ganglion cell counts in the basal and second turns of the cochlea. Animals receiving gentamicin applied to the stapes footplate exhibited markedly higher levels of hearing loss between 8 and 32 kHz, a greater reduction of outer hair cells in the basal turn of the cochlea and fewer normal type I cells in the utricle in the vestibule than those receiving gentamicin on the RWM or saline controls. This suggests that gentamicin more readily enters the ear when applied to the stapes footplate compared with RWM application. These data provide a potential explanation for why gentamicin preferentially ablates vestibular function while preserving hearing following transtympanic administration in humans.
- ItemGentamicin Applied to the Oval Window Suppresses Vestibular Function in Guinea Pigs(Springer, 2017-01) King, Elisha; Shepherd, Robert; Brown, Daniel; Fallon, JamesIntratympanic gentamicin therapy is widely used clinically to treat the debilitating symptoms of Meniere's disease. Cochleotoxicity is an undesirable potential side effect of the treatment and the risk of hearing loss increases proportionately with gentamicin concentration in the cochlea. It has recently been shown that gentamicin is readily absorbed through the oval window in guinea pigs. The present study uses quantitative functional measures of vestibular and cochlea function to investigate the efficacy of treating the vestibule by applying a small volume of gentamicin onto the stapes footplate in guinea pigs. Vestibular and cochlea function were assessed by recording short latency vestibular evoked potentials in response to linear head acceleration and changes in hearing threshold, respectively, 1 and 2 weeks following treatment. Histopathology was analyzed in the crista ampullaris of the posterior semi-circular canal and utricular macula in the vestibule, and in the basal and second turns of the cochlea. In animals receiving gentamicin on the stapes footplate, vestibular responses were significantly suppressed by 72.7 % 2 weeks after treatment with no significant loss of hearing. This suggests that the vestibule can be treated directly by applying gentamicin onto the stapes footplate.
- ItemInfluence of cochleostomy and cochlear implant insertion on drug gradients following intratympanic application in guinea pigs(Karger Medical and Scientific Publishers, 2013-09) King, Elisha; Hartsock, Jared; O'Leary, Stephen; Salt, AlecLocally applied drugs can protect residual hearing following cochlear implantation. The influence of cochlear implantation on drug levels in the scala tympani (ST) after round window application was investigated in guinea pigs using the marker trimethylphenylammonium (TMPA) measured in real time with TMPA-selective microelectrodes. TMPA concentration in the upper basal turn of the ST rapidly increased during implantation and then declined due to cerebrospinal fluid entering the ST at the cochlear aqueduct and exiting at the cochleostomy. The TMPA increase was found to be caused by the cochleostomy drilling if the burr tip partially entered the ST. TMPA distribution in the second turn was less affected by implantation procedures. These findings show that basal turn drug levels may be changed during implantation and the changes may need to be considered in the interpretation of therapeutic effects of drugs in conjunction with implantation.
- ItemPerilymph pharmacokinetics of locally-applied gentamicin in the guinea pig(Elsevier B.V., 2016-12) Salt, Alec; Hartsock, Jared; Gill, R. Montgomery; King, Elisha; Kraus, F. Bernhard; Plontke, StefanIntratympanic gentamicin therapy is widely used clinically to suppress the vestibular symptoms of Meniere's disease. Dosing in humans was empirically established and we still know remarkably little about where gentamicin enters the inner ear, where it reaches in the inner ear and what time course it follows after local applications. In this study, gentamicin was applied to the round window niche as a 20 muL bolus of 40 mg/ml solution. Ten 2 muL samples of perilymph were collected sequentially from the lateral semi-circular canal (LSCC) at times from 1 to 4 h after application. Gentamicin concentration was typically highest in samples originating from the vestibule and was lower in samples originating from scala tympani. To interpret these results, perilymph elimination kinetics for gentamicin was quantified by loading the entire perilymph space by injection at the LSCC with a 500 mug/ml gentamicin solution followed by sequential perilymph sampling from the LSCC after different delay times. This allowed concentration decline in perilymph to be followed with time. Gentamicin was retained well in scala vestibuli and the vestibule but declined rapidly at the base of scala tympani, dominated by interactions of perilymph with CSF, as reported for other substances. Quantitative analysis, taking into account perilymph kinetics for gentamicin, showed that more gentamicin entered at the round window membrane (57%) than at the stapes (35%) but the lower concentrations found in scala tympani were due to greater losses there. The gentamicin levels found in perilymph of the vestibule, which are higher than would be expected from round window entry alone, undoubtedly contribute to the vestibulotoxic effects of the drug. Furthermore, calculations of gentamicin distribution following targeted applications to the RW or stapes are more consistent with cochleotoxicity depending on the gentamicin concentration in scala vestibuli rather than that in scala tympani.