Browsing by Author "Irvine, Dexter"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- ItemAuditory perceptual learning and changes in the conceptualization of auditory cortex(Elsevier B.V., 2018-03) Irvine, DexterPerceptual learning, improvement in discriminative ability as a consequence of training, is one of the forms of sensory system plasticity that has driven profound changes in our conceptualization of sensory cortical function. Psychophysical and neurophysiological studies of auditory perceptual learning have indicated that the characteristics of the learning, and by implication the nature of the underlying neural changes, are highly task specific. Some studies in animals have indicated that recruitment of neurons to the population responding to the training stimuli, and hence an increase in the so-called cortical “area of representation” of those stimuli, is the substrate of improved performance, but such changes have not been observed in other studies. A possible reconciliation of these conflicting results is provided by evidence that changes in area of representation constitute a transient stage in the processes underlying perceptual learning. This expansion - renormalization hypothesis is supported by evidence from studies of the learning of motor skills, another form of procedural learning, but leaves open the nature of the permanent neural substrate of improved performance. Other studies have suggested that the substrate might be reduced response variability - a decrease in internal noise. Neuroimaging studies in humans have also provided compelling evidence that training results in long-term changes in auditory cortical function and in the auditory brainstem frequency-following response. Musical training provides a valuable model, but the evidence it provides is qualified by the fact that most such training is multimodal and sensorimotor, and that few of the studies are experimental and allow control over confounding variables. More generally, the overwhelming majority of experimental studies of the various forms of auditory perceptual learning have established the co-occurrence of neural and perceptual changes, but have not established that the former are causally related to the latter. Important forms of perceptual learning in humans are those involved in language acquisition and in the improvement in speech perception performance of post-lingually deaf cochlear implantees over the months following implantation. The development of a range of auditory training programs has focused interest on the factors determining the extent to which perceptual learning is specific or generalises to tasks other than those used in training. The context specificity demonstrated in a number of studies of perceptual learning suggests a multiplexing model, in which learning relating to a particular stimulus attribute depends on a subset of the diverse inputs to a given cortical neuron being strengthened, and different subsets being gated by top-down influences. This hypothesis avoids the difficulty of balancing system stability with plasticity, which is a problem for recruitment hypotheses. The characteristics of auditory perceptual learning reflect the fact that auditory cortex forms part of distributed networks that integrate the representation of auditory stimuli with attention, decision, and reward processes.
- ItemCochlear implant use causes changes in the auditory cortex(2013) Irving, Sam; Irvine, Dexter; Shepherd, Robert; Fallon, JamesThe tuning of sites within the auditory cortex changes within the first three months of cochlear implant use.
- ItemEffects of chronic cochlear electrical stimulation after an extended period of profound deafness on primary auditory cortex organization in cats(John Wiley & Sons Inc, 2014-03) Fallon, James; Robert, Shepherd; Irvine, DexterExtended periods of deafness have profound effects on central auditory system function and organization. Neonatal deafening results in loss of the normal cochleotopic organization of the primary auditory cortex (AI), but environmentally-derived intracochlear electrical stimulation, via a cochlear implant, initiated shortly after deafening, can prevent this loss. We investigated whether such stimulation initiated after an extended period of deafness can restore cochleotopy. In two groups of neonatally-deafened cats, a multi-channel intracochlear electrode array was implanted at 8 weeks of age. One group received only minimal stimulation, associated with brief recordings at 4-6-week intervals, over the following 6 months to check the efficacy of the implant. In the other group, this 6-month period was followed by 6 months of near-continuous intracochlear electrical stimulation from a modified clinical cochlear implant system. We recorded multi-unit clusters in the auditory cortex and used two different methods to define the region of interest in the putative AI. There was no evidence of cochleotopy in any of the minimally stimulated animals, confirming our earlier finding. In three of six chronically stimulated cats there was clear evidence of AI cochleotopy, and in a fourth cat in which the majority of penetrations were in the anterior auditory field there was clear evidence of cochleotopy in that field. The finding that chronic intracochlear electrical stimulation after an extended period of deafness is able to restore cochleotopy in some (but not all) cases has implications for the performance of patients implanted after an extended period of deafness.
- ItemEffects of deafness and cochlear implant use on temporal response characteristics in cat primary auditory cortex.(Elsevier, 2014-09) Fallon, James; Shepherd, Robert; Nayagam, David; Wise, Andrew; Heffer, Leon; Landry, Thomas; Irvine, DexterWe have previously shown that neonatal deafness of 7-13 months duration leads to loss of cochleotopy in the primary auditory cortex (AI) that can be reversed by cochlear implant use. Here we describe the effects of a similar duration of deafness and cochlear implant use on temporal processing. Specifically, we compared the temporal resolution of neurons in AI of young adult normal-hearing cats that were acutely deafened and implanted immediately prior to recording with that in three groups of neonatally deafened cats. One group of neonatally deafened cats received no chronic stimulation. The other two groups received up to 8 months of either low- or high-rate (50 or 500 pulses per second per electrode, respectively) stimulation from a clinical cochlear implant, initiated at 10 weeks of age. Deafness of 7-13 months duration had no effect on the duration of post-onset response suppression, latency, latency jitter, or the stimulus repetition rate at which units responded maximally (best repetition rate), but resulted in a statistically significant reduction in the ability of units to respond to every stimulus in a train (maximum following rate). None of the temporal response characteristics of the low-rate group differed from those in acutely deafened controls. In contrast, high-rate stimulation had diverse effects: it resulted in decreased suppression duration, longer latency and greater jitter relative to all other groups, and an increase in best repetition rate and cut-off rate relative to acutely deafened controls. The minimal effects of moderate-duration deafness on temporal processing in the present study are in contrast to its previously-reported pronounced effects on cochleotopy. Much longer periods of deafness have been reported to result in significant changes in temporal processing, in accord with the fact that duration of deafness is a major factor influencing outcome in human cochlear implantees.
- ItemEffects of prismatic adaptation on spatial gradients in neglect: a comparison of visual and auditory target detection with central attentional load(Elsevier, 2010-07) Eramudugolla, Ranmalee; Boyce, Angela; Irvine, Dexter; Mattingley, JasonPrismatic adaptation is increasingly recognised as an effective procedure for rehabilitating symptoms of spatial neglect – producing relatively long-lasting improvements on a variety of spatial attention tasks. The mechanisms by which the aftereffects of adaptation change neglect patients’ performance on these tasks remain controversial. It is not clear, for example, whether adaptation directly influences the pathological ipsilesional attention bias that underlies neglect, or whether it simply changes exploratory motor behaviour. Also, while there is considerable evidence for prism effects on neglect symptoms in the visual, proprioceptive and tactile systems, few studies have examined the generalization of aftereffects to sensory systems that are not directly involved in the adaptation procedure itself. Here we used visual and auditory versions of a target detection task with central attentional load. Under these conditions, patients with spatial neglect demonstrated a spatial gradient in their ability to detect peripheral visual or auditory targets. The effect of prism adaptation on the patients’ pathological attention gradient on these two tasks was compared. The findings have implications for understanding the level at which prism adaptation may be acting on neglect symptoms.
- ItemAn Improved Model for the Rate–Level Functions of Auditory-Nerve Fibers(Society for Neuroscience, 2011-10-26) Heil, Peter; Neubauer, Heinrich; Irvine, DexterAcoustic information is conveyed to the brain by the spike patterns in auditory-nerve fibers (ANFs). In mammals, each ANF is excited via a single ribbon synapse in a single inner hair cell (IHC), and the spike patterns therefore also provide valuable information about those intriguing synapses. Herewereexamine and model a key property of ANFs, the dependence of their spike rates on the sound pressure level of acoustic stimuli (rate–level functions). We build upon the seminal model of Sachs and Abbas (1974), which provides good fits to experimental data but has limited utility for defining physiological mechanisms. We present an improved, physiologically plausible model according to which the spike rate follows a Hill equation and spontaneous activity and its experimentally observed tight correlation with ANF sensitivity are emergent properties. We apply it to 156 cat ANF rate–level functions using frequencies where the mechanics are linear and find that a single Hill coefficient of 3 can account for the population of functions. We also demonstrate a tight correspondence between ANF rate–level functions and the Ca2 dependence of exocytosis from IHCs, and derive estimates of the effective intracellular Ca2 concentrations at the individual active zones of IHCs.Weargue that the Hill coefficient might reflect the intrinsic, biochemical Ca2 cooperativity of the Ca2 sensor involved in exocytosis from the IHC. The model also links ANF properties with properties of psychophysical absolute thresholds.
- ItemA model of synaptic-vesicle-pool depletion and replenishment can account for the inter spike-interval distributions and non-renewal properties of spontaneous spike trains of auditory-nerve fibers(IOP Science, 2014-11) Peterson, Adam; Irvine, Dexter; Heil, PeterIn mammalian auditory systems, the spiking characteristics of each primary afferent (type I auditory-nerve fiber; ANF) are mainly determined by a single ribbon synapse in a single receptor cell (inner hair cell; IHC). ANF spike trains therefore provide a window into the operation of these synapses and cells. It was demonstrated previously (Heil et al., 2007) that the distribution of interspike intervals (ISIs) of cat ANFs during spontaneous activity can be modeled as resulting from refractoriness operating on a non-Poisson stochastic point process of excitation (transmitter release events from the IHC). Here, we investigate nonrenewal properties of these cat-ANF spontaneous spike trains, manifest as negative serial ISI correlations and reduced spike-count variability over short timescales. A previously discussed excitatory process, the constrained failure of events from a homogeneous Poisson point process, can account for these properties, but does not offer a parsimonious explanation for certain trends in the data. We then investigate a three-parameter model of vesicle-pool depletion and replenishment and find that it accounts for all experimental observations, including the ISI distributions, with only the release probability varying between spike trains. The maximum number of units (single vesicles or groups of simultaneously released vesicles) in the readily releasable pool and their replenishment time constant can be assumed to be constant (∼4 and 13.5 ms, respectively). We suggest that the organization of the IHC ribbon synapses not only enables sustained release of neurotransmitter but also imposes temporal regularity on the release process, particularly when operating at high rates.
- ItemThe Origins and Early Development of Australasian Auditory Neuroscience(Springer Singapore, 2016-06) Irvine, DexterThe impressive achievements of Australasian auditory neuroscience largely derive from the establishment of three major laboratories, at the University of Western Australia, Monash University, and the University of Melbourne, in the 1960s. The research foci of these laboratories, and the achievements of the scientists who established them, and of their colleagues and students, are described in this paper. The early development of auditory neuroscience occurred in a context provided by research activity in a number of other areas of hearing science, among them audiology, otolaryngology, psychoacoustics, and vestibular science. The development of these and some other strands of Australasian hearing science is briefly reviewed.
- ItemPlasticity in the Auditory System(Elsevier B.V., 2017-11) Irvine, DexterOver the last 30 years a wide range of manipulations of auditory input and experience have been shown to result in plasticity in auditory cortical and subcortical structures. The time course of plasticity ranges from very rapid stimulus-specific adaptation to longer-term changes associated with, for example, partial hearing loss or perceptual learning. Evidence for plasticity as a consequence of these and a range of other manipulations of auditory input and/or its significance is reviewed, with an emphasis on plasticity in adults and in the auditory cortex. The nature of the changes in auditory cortex associated with attention, memory and perceptual learning depend critically on task structure, reward contingencies, and learning strategy. Most forms of auditory system plasticity are adaptive, in that they serve to optimize auditory performance, prompting attempts to harness this plasticity for therapeutic purposes. However, plasticity associated with cochlear trauma and partial hearing loss appears to be maladaptive, and has been linked to tinnitus. Three important forms of human learning-related auditory system plasticity are those associated with language development, musical training, and improvement in performance with a cochlear implant. Almost all forms of plasticity involve changes in synaptic excitatory - inhibitory balance within existing patterns of connectivity. An attractive model applicable to a number of forms of learning-related plasticity is dynamic multiplexing by individual neurons, such that learning involving a particular stimulus attribute reflects a particular subset of the diverse inputs to a given neuron being gated by top-down influences. The plasticity evidence indicates that auditory cortex is a component of complex distributed networks that integrate the representation of auditory stimuli with attention, decision and reward processes.
- ItemSecond spatial derivative analysis of cortical surface potentials recorded in cat primary auditory cortex using thin film surface arrays: Comparisons with multi-unit data(Elsevier Ltd., 2016-04) Fallon, James; Irving, Sam; Pannu, Satinderpall; Tooker, Angela; Wise, Andrew; Shepherd, Robert; Irvine, DexterBACKGROUND: Current source density analysis of recordings from penetrating electrode arrays has traditionally been used to examine the layer- specific cortical activation and plastic changes associated with changed afferent input. We report on a related analysis, the second spatial derivative (SSD) of surface local field potentials (LFPs) recorded using custom designed thin-film polyimide substrate arrays. RESULTS: SSD analysis of tone- evoked LFPs generated from the auditory cortex under the recording array demonstrated a stereotypical single local minimum, often flanked by maxima on both the caudal and rostral sides. In contrast, tone-pips at frequencies not represented in the region under the array, but known (on the basis of normal tonotopic organization) to be represented caudal to the recording array, had a more complex pattern of many sources and sinks. COMPARISON WITH EXISTING METHODS: Compared to traditional analysis of LFPs, SSD analysis produced a tonotopic map that was more similar to that obtained with multi-unit recordings in a normal-hearing animal. Additionally, the statistically significant decrease in the number of acoustically responsive cortical locations in partially deafened cats following 6 months of cochlear implant use compared to unstimulated cases observed with multi-unit data (p=0.04) was also observed with SSD analysis (p=0.02), but was not apparent using traditional analysis of LFPs (p=0.6). CONCLUSIONS: SSD analysis of surface LFPs from the thin-film array provides a rapid and robust method for examining the spatial distribution of cortical activity with improved spatial resolution compared to more traditional LFP recordings.