Browsing by Author "El-deredy, Wael"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemCortical auditory evoked potentials as an objective measure of behavioral thresholds in cochlear implant users(Elsevier B.V, 2015-09) Visram, Anisa; Innes-Brown, Hamish; El-deredy, Wael; McKay, ColetteThe aim of this study was to assess the suitability of using cortical auditory evoked potentials (CAEPs) as an objective tool for predicting behavioral hearing thresholds in cochlear implant (CI) users. Nine experienced adult CI users of Cochlear™ devices participated. Behavioral thresholds were measured in CI users across apical, mid and basal electrodes. CAEPs were measured for the same stimuli (50 ms pulse trains of 900-pps rate) at a range of input levels across the individual's psychophysical dynamic range (DR). Amplitude growth functions using global field power (GFP) were plotted, and from this the CAEP thresholds were extrapolated and compared to the behavioral thresholds. Increased amplitude and decreased latency of the N1–P2 response was seen with increasing input level. A strong correlation was found between CAEP and behavioral thresholds (r = 0.93), implying that the cortical response may be more useful as an objective programming tool for cochlear implants than the auditory nerve response.
- ItemElectrically evoked compound action potentials artefact rejection by independent component analysis: Procedure automation(Elsevier B.V, 2015-01-15) Akhoun, Idrick; McKay, Colette; El-deredy, WaelBACKGROUND: Independent-components-analysis (ICA) successfully separated electrically-evoked compound action potentials (ECAPs) from the stimulation artefact and noise (ECAP-ICA, Akhoun et al., 2013). NEW METHOD: This paper shows how to automate the ECAP-ICA artefact cancellation process. Raw-ECAPs without artefact rejection were consecutively recorded for each stimulation condition from at least 8 intra-cochlear electrodes. Firstly, amplifier-saturated recordings were discarded, and the data from different stimulus conditions (different current-levels) were concatenated temporally. The key aspect of the automation procedure was the sequential deductive source categorisation after ICA was applied with a restriction to 4 sources. The stereotypical aspect of the 4 sources enables their automatic classification as two artefact components, a noise and the sought ECAP based on theoretical and empirical considerations. RESULTS: The automatic procedure was tested using 8 cochlear implant (CI) users and one to four stimulus electrodes. The artefact and noise sources were successively identified and discarded, leaving the ECAP as the remaining source. The automated ECAP-ICA procedure successfully extracted the correct ECAPs compared to standard clinical forward masking paradigm in 22 out of 26 cases. COMPARISON WITH EXISTING METHOD(S): ECAP-ICA does not require extracting the ECAP from a combination of distinct buffers as it is the case with regular methods. It is an alternative that does not have the possible bias of traditional artefact rejections such as alternate-polarity or forward-masking paradigms. CONCLUSIONS: The ECAP-ICA procedure bears clinical relevance, for example as the artefact rejection sub-module of automated ECAP-threshold detection techniques, which are common features of CI clinical fitting software.
- ItemElectrode Selection and Speech Understanding in Patients With Auditory Brainstem Implants(Wolters Kluwer Health, Inc, 2015-07) McKay, Colette; Azadpour, Mahan; Jayewardene-Aston, Deanne; O'Driscoll, Martin; El-deredy, WaelObjectives: The objective of this study was to evaluate whether speech understanding in auditory brainstem implant (ABI) users who have a tumor pathology could be improved by the selection of a subset of electrodes that were appropriately pitch ranked and distinguishable. It was hypothesized that disordered pitch or spectral percepts and channel interactions may contribute significantly to the poor outcomes in most ABI users. Design: A single-subject design was used with five participants. Pitch ranking information for all electrodes in the patients’ clinic maps was obtained using a pitch ranking task and previous pitch ranking information from clinic sessions. A multidimensional scaling task was used to evaluate the stimulus space evoked by stimuli on the same set of electrodes. From this information, a subset of four to six electrodes was chosen and a new map was created, using just this subset, that the subjects took home for 1 month’s experience. Closed-set consonant and vowel perception and sentences in quiet were tested at three sessions: with the clinic map before the test map was given, after 1 month with the test map, and after an additional 2 weeks with their clinic map. Results: The results of the pitch ranking and multidimensional scaling procedures confirmed that the ABI users did not have a well-ordered set of percepts related to electrode position, thus supporting the proposal that difficulty in processing of spectral information may contribute to poor speech understanding. However, none of the subjects benefited from a map that reduced the stimulation electrode set to a smaller number of electrodes that were well ordered in place pitch. Conclusions: Although poor spectral processing may contribute to poor understanding in ABI users, it is not likely to be the sole contributor to poor outcomes.