About the Bionics Institute


Bionics Institute Research Online >
Neurobionics >
Neurobionics Research Publications >

Title: Ring and peg electrodes for minimally-Invasive and long-term sub-scalp EEG recordings
Authors: Benovitski, Yuri
Lai, Alan
McGowan, Ceara
Burns, Owen
Maxim, Vanessa
Nayagam, David
Millard, Rodney
Rathbone, Graeme
le Chevoir, M.A.
Williams, R.A.
Grayden, David
May, C.N.
Murphy, M.
D'Souza, Wendyl
Cook, Mark
Williams, Chris
Keywords: Long-term EEG
Sub-scalp electrode
Issue Date: Jun-2017
Publisher: Elsevier, Ltd.
Citation: Benovitski, Y. B., A. Lai, C. C. McGowan, O. Burns, V. Maxim, D. A. X. Nayagam, R. Millard, G. D. Rathbone, M. A. le Chevoir, R. A. Williams, D. B. Grayden, C. N. May, M. Murphy, W. J. D'Souza, M. J. Cook, and C. E. Williams. 2017. Ring and peg electrodes for minimally-Invasive and long-term sub-scalp EEG recordings. Epilepsy Research. 135: 29-37.
Abstract: OBJECTIVE: Minimally-invasive approaches are needed for long-term reliable Electroencephalography (EEG) recordings to assist with epilepsy diagnosis, investigation and more naturalistic monitoring. This study compared three methods for long-term implantation of sub-scalp EEG electrodes. METHODS: Three types of electrodes (disk, ring, and peg) were fabricated from biocompatible materials and implanted under the scalp in five ambulatory ewes for 3months. Disk electrodes were inserted into sub-pericranial pockets. Ring electrodes were tunneled under the scalp. Peg electrodes were inserted into the skull, close to the dura. EEG was continuously monitored wirelessly. High resolution CT imaging, histopathology, and impedance measurements were used to assess the status of the electrodes at the end of the study. RESULTS: EEG amplitude was larger in the peg compared with the disk and ring electrodes (p<0.05). Similarly, chewing artifacts were lower in the peg electrodes (p<0.05). Electrode impedance increased after long-term implantation particularly for those within the bone (p<0.01). Micro-CT scans indicated that all electrodes stayed within the sub-scalp layers. All pegs remained within the burr holes as implanted with no evidence of extrusion. Eight of 10 disks partially eroded into the bone by 1.0mm from the surface of the skull. The ring arrays remained within the sub-scalp layers close to implantation site. Histology revealed that the electrodes were encapsulated in a thin fibrous tissue adjacent to the pericranium. Overlying this was a loose connective layer and scalp. Erosion into the bone occurred under the rim of the sub-pericranial disk electrodes. CONCLUSIONS: The results indicate that the peg electrodes provided high quality EEG, mechanical stability, and lower chewing artifact. Whereas, ring electrode arrays tunneled under the scalp enable minimal surgical techniques to be used for implantation and removal.
URI: http://repository.bionicsinstitute.org:8080/handle/123456789/303
ISSN: 1872-6844 (Electronic) 0920-1211 (Linking)
Appears in Collections:Neurobionics Research Publications

Files in This Item:

File Description SizeFormat
2017_Benovitski_Ringandpeg.pdf1.66 MBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2010  Duraspace -